on jordan left derivations and generalized jordan left derivations of matrix rings

نویسندگان

nader mohammad ghosseiri

academic member of university of kurdistan

چکیده

abstract. let r be a 2-torsion free ring with identity. in this paper, first we prove that any jordan left derivation (hence, any left derivation) on the full matrix ringmn(r) (n  2) is identically zero, and any generalized left derivation on this ring is a right centralizer. next, we show that if r is also a prime ring and n  1, then any jordan left derivation on the ring tn(r) of all n×n upper triangular matrices over r is a left derivation, and any generalized jordan left derivation on tn(r) is a generalized left derivation. moreover, we prove that any generalized left derivation on tn(r) is decomposed into the sum of a right centralizer and a jordan left derivation. some related results are also obtained.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Jordan left derivations and generalized Jordan left derivations of matrix rings

Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...

متن کامل

Left Jordan derivations on Banach algebras

In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.

متن کامل

Jordan left derivations in full and upper triangular matrix rings

In this paper, left derivations and Jordan left derivations in full and upper triangular matrix rings over unital associative rings are characterized.

متن کامل

Lahcen Oukhtite GENERALIZED JORDAN LEFT DERIVATIONS IN RINGS WITH INVOLUTION

In the present paper we study generalized left derivations on Lie ideals of rings with involution. Some of our results extend other ones proven previously just for the action of generalized left derivations on the whole ring. Furthermore, we prove that every generalized Jordan left derivation on a 2-torsion free ∗-prime ring with involution is a generalized left derivation.

متن کامل

Centralizing automorphisms and Jordan left derivations on σ-prime rings

Let R be a 2-torsion free σ-prime ring. It is shown here that if U 6⊂ Z(R) is a σ-Lie ideal of R and a, b in R such that aUb = σ(a)Ub = 0, then either a = 0 or b = 0. This result is then applied to study the relationship between the structure of R and certain automorphisms on R. To end this paper, we describe additive maps d : R −→ R such that d(u) = 2ud(u) where u ∈ U, a nonzero σ-square close...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

جلد ۳۸، شماره ۳، صفحات ۶۸۹-۶۹۸

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023